CodeTitreGradeCrédits
3673Doctorat en mathématiques Philosophiae Doctor, Ph.D.90
Trimestres d'admission Contingent Régime et durée des études Campus Organisation des études Autres caractéristiques
Automne
Hiver
Dates limites d'admission
Programme non contingenté Temps complet seulement : 4 ans Montréal Cours offerts de jour Offre un volet international

Cours à suivre et horaires

Mes cours favoris

Ce système permet de sélectionner vos cours favoris en prévision de votre inscription qui se fait sur le portail étudiant.

Trimestre Cours Groupe

(Sauf indication contraire, les cours comportent 3 crédits. Certains cours ont des préalables. Consultez la description des cours pour les connaître.)

CONCENTRATION EN MATHÉMATIQUES COMBINATOIRES

Cours et séminaires (18 crédits)

Six cours choisis dans la liste a), b), c), d), e) dont au moins deux dans la liste b) et au moins deux cours de séminaire à contenu variable [MAT995X].

CONCENTRATION EN GÉOMÉTRIE DIFFÉRENTIELLE ET TOPOLOGIE

Cours et séminaires (dix-huit crédits)

Six cours choisis dans la liste a), b), c), d), e) dont au moins deux dans la liste c) et au moins deux cours de séminaire à contenu variable [MAT993X].

CONCENTRATION EN INFORMATIQUE MATHÉMATIQUE

Cours et séminaires (18 crédits)

Six cours choisis dans la liste a), b), c), d), e) dont au moins deux dans la liste d) et au moins deux cours de séminaire à contenu variable [INF994X].

CONCENTRATION EN STATISTIQUE

Cours et séminaires (18 crédits)

Six cours choisis dans la liste a), b), c), d), e) dont au moins deux dans la liste e) et au moins deux cours de séminaire à contenu variable [MAT998X].

Note : Pour chacune des concentrations, les cours à suivre peuvent être remplacés par des cours jugés équivalents avec l'approbation du directeur de thèse et du sous-comité d'admission et d'évaluation.

a)

b)

c)

d)

e)

Examen (écrit) de synthèse (6 crédits):

Cet examen, divisé en deux parties (la partie mathématiques générales et la partie concentration), a pour but de s'assurer que l'étudiant possède des connaissances de base en algèbre, en analyse et dans la concentration qu'il a choisie.

L'étudiant doit réussir l'examen de synthèse partie générale durant la première année suivant son admission et l'examen de synthèse (partie dans sa concentration) avant la fin de la deuxième année suivant son admission.

Remarque : Le candidat voudra bien prendre note que les activités au choix dans ce programme et énumérées ci-dessus ne peuvent être offertes à chacun des trimestres (automne, hiver ou été). Par conséquent, elles sont réparties sur plusieurs trimestres et sont donc offertes en alternance d'un trimestre, voire d'une année à l'autre.

Thèse (66 crédits)

La thèse de doctorat doit apporter une contribution originale en mathématiques et dans la concentration choisie par le candidat. L'étudiant sera encouragé à publier, seul ou en collaboration, ses résultats dans des revues scientifiques spécialisées.

Champs de recherche

Combinatoires
Géométrie différentielle et topologie
Didactique des mathématiques
Statistiques
Actuariat
Probabilité
Informatique mathématique

Ouverture à l'international

  • Possibilité de cotutelle avec des universités françaises.
  • Programme d'échange avec l'École supérieure d'informatique en France (Exia.Cesi).
  • Possibilité de suivre un programme d'échanges à l'international.

Particularités

  • Programme comportant quatre concentrations : mathématiques combinatoires, géométrie différentielle et topologie, informatique mathématique et statistique.
  • Plusieurs unités de recherche de notoriété internationale : Chaire de recherche du Canada, Chaire UNESCO, centres de recherche et groupes de recherche facultaires.

Présentation du programme

Les sciences mathématiques contribuent à l'avancement des connaissances dans plusieurs domaines de pointe comme l'actuariat, la didactique ou l'informatique. Reconnus pour leur expertise et leur accessibilité, les professeurs du département encadrent les étudiants dans leur projet de mémoire réalisé au sein d'une équipe de recherche.

Les activités du programme couvrent un large champ d'activité et ouvrent des perspectives professionnelles intéressantes comme celles de mathématicien, développeur, statisticien, professeur, chercheur, analyste de systèmes ou consultant pour des projets d'envergure.

Perspectives professionnelles

  • Mathématicien
  • Statisticien
  • Professeur
  • Chercheur
  • Consultant
  • Analyste

Conditions d'admission

Admission aux trimestres d'automne et d'hiver.

Le candidat doit être titulaire d'une maîtrise en mathématiques ou l'équivalent obtenue avec une moyenne cumulative d'au moins 3,2 sur 4,3 ou l'équivalent
ou
être titulaire d'un grade de bachelier et posséder les connaissances requises et une formation appropriée.

Exceptionnellement, le candidat qui a obtenu sa maîtrise ou l'équivalent avec une moyenne cummulative inférieure à 3,2 sur 4,3 mais égale ou supérieure à 2,8 sur 4,3 ou l'équivalent, peut être admis après études de son dossier.

Exceptionnellement, un candidat dont la formation en mathématiques n'est pas pertinente au programme peut être accepté après avoir réussi un examen d'admission portant sur des connaissances générales acquises en mathématiques. Le cas échéant, ce candidat pourra se voir imposer des cours d'appoint dans la concentration choisie. Tout candidat doit présenter, avec sa demande, un avant-projet de recherche pour sa thèse.

Capacité d'accueil

Le programme n'est pas contingenté.
Compte tenu des ressources disponibles et de la nature du programme, le sous-comité d'admission et d'évaluation pourra, si cela s'avère nécessaire, limiter le nombre de candidats.

Méthode et critères de sélection

Évaluation du dossier académique et des lettres de recommandation.

Une entrevue avec le sous-comité d'admission et d'évaluation pourra être exigée dans certains cas.

Méthodes pédagogiques privilégiées

Cours magistraux Séminaires Conférences invitées Travaux individuels Présentations orales

Objectifs

Ce programme de troisième cycle a comme objectif la formation de chercheurs scientifiques et l'avancement des connaissances en mathématiques dans certains domaines de pointe. Le programme vise également l'application des connaissances mathématiques à la résolution de problèmes dans des domaines variés, par exemple la physique théorique, l'optimisation combinatoire, l'algorithmique, l'informatique fondamentale, l'analyse statistique, etc.

Ce programme comporte quatre concentrations:
1. concentration en mathématiques combinatoires
2. concentration en géométrie différentielle et topologie
3. concentration en informatique mathématique
4. concentration en statistique.

Organisation des études

Cours offerts de jour

Régime et durée des études (extrait)

Temps complet seulement : 4 ans

Frais

Pour les fins d'inscription et de paiement des frais de scolarité, ce programme est rangé dans la classe B.

Régime et durée des études

Temps complet seulement: quatre ans

Guides d'inscription

Basé sur les renseignements disponibles le 2010-02-02

Retour en haut de page